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Abstract — Radial basis function (RBF) collocation method, 
as a newly developed meshless method, shows a great 
advantage in the computation of transient eddy current 
magnetic problems with moving conductors. In the former 
research, the magnetic field was solved by time-domain 
iteration. One problem is that the coefficient matrix of the 
RBF governing equations, which needs to be computed in each 
iteration step, is full. As the number of RBF nodes used in the 
model increases, the computational capacity will grow rapidly. 
The domain decomposition method (DDM) is a useful tool to 
divide the solving domain into several sub-domains and could 
be conveniently combined with RBF collocation method. This 
paper first applies DDM combined RBF collocation method to 
compute transient electromagnetic problems with moving 
conductors. With this method, the iteration only proceeds in 
the sub-domain which contains the conductor part. And the 
magnetic field in the sub-domains without conductors needs to 
be computed only once before the iteration. Therefore, the size 
of the coefficient matrix used in the iteration is determined by 
the number of RBF nodes in the corresponding sub-domain 
and on the link boundary. An engineering problem is 
computed to show that the DDM combined RBF method is 
much more efficient than the normal RBF method. 

I. INTRODUCTION 
The research on the computation of transient eddy 

current problems coupled with conductor movement has 
always been attractive in computational electromagnetics. 
In [1], time-domain iteration is constructed by radial basis 
function (RBF) collocation method to compute the 
convective diffusion equations of the magnetic field. 
However, the coefficient matrix of the RBF collocation 
governing equation, which needs to be solved in each 
iteration step, is full. As the number of RBF node used in 
the model increases, the computation will become time-
consuming. 

To reduce the computational capacity of RBF 
collocation method, one effective way is to make its 
coefficient matrix of governing equations become a sparse 
one like the finite element method (FEM). The domain 
decomposition method (DDM) is a useful tool to divide the 
solving domain into several sub-domains. And this method 
has been introduced into RBF collocation method to 
compute electrostatic problems with complex materials [2]. 
In the transient eddy current problems, only the magnetic 
field on the nodes belonging to the conductor area is 
governed by the convective diffusion equations. The field 
on the other nodes still satisfies the Poisson equation as 
static problems. With DDM, the iteration could only 

proceed in the sub-domain containing the conductor. 
Therefore, the size of the coefficient matrix used in the 
iteration is determined by the number of RBF nodes in the 
corresponding sub-domain and on the link boundary. 
Through the numerical example, we could see that the 
computational capacity could be greatly reduced with DDM 
combined RBF compared with the normal RBF collocation 
method. 

II. RBF COLLOCATION GOVERNING EQUATIONS FOR 
MOVING CONDUCTOR EDDY CURRENT PROBLEMS 

Without loss of generality, consider a 2-D 
homogeneous and isotropic electromagnetic system in 
which a nonmagnetic conductor is restricted to move along 
the y- axis direction with a speed V. The governing 
equation of the magnetic field in the conductor is: 
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where A=Az is the z-axis component of magnetic vector 
potential and Js is the excitation current density. The 
conductivity σ and the permeability μ are assumed constant. 
The magnetic field is approximated by RBF as: 
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where ( iϕ −x x  is the RBF centered at the node with a 
coordinate ( , )i ix y=ix , means the Euclid norm. is 
the unknown coefficient vector and N is the number of RBF 
nodes. The RBF collocation model in moving coordinate 
systems could be seen in [1]. The magnetic field is regarded 
as a superposition of two fields A

⋅ ( )ta

s and Ae approximated 
respectively by separate RBFs in moving coordinate 
systems as: 

( ) ( ) ( ) ( )s e s s e eA A A t tΤ Τ= + = +s ex a x aϕ ϕ                          (3) 
where the subscript s and e mean the excitation current and 
eddy current respectively. The iteration scheme to solve (1) 
could be written as [1]:  
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where L(.) refers to a linear operator. In the iteration, As is 
computed as static problems. If we know the variation of Js, 

sa needs to be calculated only once and the results in the 
following iteration step could be obtained by the linear 
relationship between sa and Js. So the computational 
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capacity of As could be ignored. Since Ae needs to be 
computed in each iteration step, the size of coefficient 
matrix is mainly determined by its RBF nodes number Ne.    
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III. DOMAIN DECOMPOSITION METHOD 

The main idea of DDM is to divide the solving domain 
into several sub-domains in which the field could be 
computed simultaneity [2]. Assuming that the solving 
domain with its boundary is divided into two parts Ω1 and 
Ω2, Г is the boundary between them as: . The 
magnetic field fulfills: 

1Γ = Ω ∩Ω

5. Compute pA with: 

( ) ( ) ( )T T
pA = +p Γpx x a ψ x aϕ                                            (11) 
The conductor is assumed to be in the sub-domain Ω1. 

Applying (6)-(11) to compute the eddy current magnetic 
field Ae, we need to solve two matrix equations in each 
iteration steps and the size of them is N1 and NГ. Apparently, 
if we divide more sub-domains, the computational capacity 
would be further reduced. Expressing the boundary 
between them with 1 2, , MΓ Γ Γ , equation (10) must be 

applied on all of them and . 
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1 2/ /A n A n∂ ∂ − ∂ ∂ =                    on Г                              (5c) 
where n is the normal direction of Г. Set N1 and N2 RBF 
nodes in Ω1 and Ω2 respectively. Among them, the last N0 
nodes are established on Г. Then set another NГ nodes on Г. 
The coordinates of these nodes are denoted by subscripts 1, 
2 and Г according to their location. Combing DDM with 
RBF collocation method, equation (5) could be solved as 
follows: 

IV. NUMERAL EXAMPLE AND CONCLUSION 

An electromagnetic launcher system, which could be 
seen in [3], is analyzed with normal and DDM combined 
RBF collocation method for compare. The parameters of 
the RBF models and the computing time are shown in 
Table I. Six sub-domains are divided in the DDM 
combined RBF model. Both methods could obtain a proper 
result compared with the experiment data from [3]. 
However, from the table we could see that the DDM 
combined RBF is much more efficient. More details about 
the model and the numerical results will be presented in the 
full paper. 

TABLE I 
INFORMATION OF RBF MODEL AND COMPUTING TIME 

1. Let 1 1 1λ′= + 2 2 2A A, λ′= + . Using the subscript p to 
denote the corresponding sub-domains, we have: 

p pA A pλ′= + where p=1 or 2. 
2. Express pA′  with RBF respectively and their 

coefficient parameter pa could be solved from:  
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3. The componentλ relates to the nodes on Г as: 
 Normal RBF 

collocation method 
DDM combined RBF 
collocation method 

Nodes number used 
in the iteration Ne=2047 Npe=308, NГ=127 

Computing time for 
one iteration step 

(unit: s) 
31.2 0.7 
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where the function ( , )pk kψ Γx x  is  expressed with the 
RBFs in pΩ as: 
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4. Compute the coefficient Γa with: 
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